Learning the Empirical Hardness of Combinatorial Auctions

Kevin Leyton-Brown *Eugene Nudelman* Yoav Shoham

Computer Science Stanford University

Thanks to: Carla Gomes, Bart Selman, Rámon Béjar Ioannis Vetsikas, and Henry Kautz

Introduction

- Recent trend: study of average/empirical hardness as opposed to the worst-case complexity (*NP*-Hardness) [Cheeseman et al.; Selman et al.]
- Our proposal: predict the running time of an algorithm on a particular instance based on features of that instance
- Today:
 - a methodology for doing this
 - its application to the combinatorial auction winner determination problem (WDP)

Why?

Predict running time

- for its own sake
- build algorithm portfolios
- Theoretical understanding of hardness
 - tune distributions for hardness
 - improve algorithms
- Problem specific
 - WDP: design bidding rules

Related Work

- Decision problems:
 - phase transitions in solvability, corresponding to hardness spike [Cheeseman et al.; Selman et al.]
 - solution invariants: e.g., backbone [Gomes et al.]
- Optimization problems:
 - experimental:
 - reduce to decision problem [Zhang et al.]
 - introduce backbone concepts [Walsh et al.]
 - theoretical:
 - polynomial/exponential transition in search algorithms
 [Zhang]
 - predict A* nodes expanded for problem distribution [Korf, Reid]

Learning

dynamic restart policies [Kautz et al.]

Combinatorial Auctions

- Auctioneer sells a set of non-homogeneous items
- Bidders often have complex valuations
 - complementarities
 - e.g. V(TV & VCR) > V(TV) + V(VCR)
 - substitutabilities
 - $V(TV_1 \& TV_2) < V(TV_1) + V(TV_2)$
- Solution: allow bids on *bundles* of goods
 - achieves a higher revenue and social welfare than separate auctions
- Two hard problems:
 - Expressing valuations
 - Determining optimal allocation

Winner Determination Problem

- Equivalent to weighted set packing
- Input: *m* bids $\langle S_i, p_i \rangle, S_i \subseteq \{1 \dots N\}$
- Objective: find revenue-maximizing nonconflicting allocation

September 12, 2004

m maximize: $\sum x_i p_i$ i=1subject to: $\sum x_i \leq 1$ $\forall q$ $i|g \in S_i$ $x_i \in \{0, 1\}$ $\forall i$

- Even constant factor approximation is NP-Hard
- Square-root approximation known
- Polynomial in the number of bids

Constraint Programming 2002, Cornell

WDP Case Study

- Difficulty: highly parameterized, complex distributions
- Hard to analyze theoretically
 - large variation in edge costs and branching factors throughout the search tree [Korf, Reid, Zhang]
- Too many parameters to vary systematically [Walsh et al., Gomes et. al.]
- Parameters affect expected optimum: difficult to transform to decision problem [Zhang et al.]

- 1. Select algorithm
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

- 1. Select algorithm: ILOG's CPLEX 7.1
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

1. Select algorithm

2. Select set of input distributions

- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

WDP Distributions

Legacy (7 distributions)

- sample bid sizes/prices independently from simple statistical distributions
- Combinatorial Auctions Test Suite (CATS)
 - Attempted to model bidder valuations to provide more motivated CA distributions
 - 1. regions: real estate
 - arbitrary: complementarity described by weighted graph
 - **3.** matching: FAA take-off & landing auctions
 - scheduling: single resource, multiple deadlines for each agent [Wellman]

- 1. Select algorithm
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

Problem Size

- Some sources of hardness well-understood
 - hold these constant to focus on unknown sources of hardness
- Common: input size
- Problem size is affected by preprocessing techniques! (e.g. arc-consistency)
- WDP: dominated bids can be removed
- (raw #bids, #goods) is a very misleading measure of size for legacy distributions
 - we fix size as (#non-dominated bids, #goods)

Raw vs. Non-Dominated Bids

(64 goods, target of 2000 non-dominated bids)

- 1. Select algorithm
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

Features

- No automatic way to construct features
 - must come from domain knowledge
- We require features to be:
 - polynomial-time computable
 - distribution-independent
- We identified 35 features
 - after using various statistical feature selection techniques, we were left with 25

Features

- Bid Good Graph (BGG)
 - 1. Bid node degree stats
 - 2. Good node degree stats

Price-based features
9. std. deviation
10. stdev price/#goods
11. stdev price/ √#goods

- Bid Graph (BG)
 - 3. node degree stats
 - 4. edge density
 - 5. clustering coef. and deviation
 - 6. avg. min. path. length
 - 7. ratio of 5 & 6
 - 8. node eccentricity stats
- LP Relaxation
 12. L₁, L₂, L_∞ norms of integer slack vector

- 1. Select algorithm
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- **5.** Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

Experimental Setup

- Sample parameters uniformly from range of acceptable values
- 3 separate datasets:
 - 256 goods, 1000 non-dominated bids
 - 144 goods, 1000 non-dominated bids
 - 64 goods, 2000 non-dominated bids
- 4500 instances/dataset, from 9 distributions
- Collecting data took approximately 3 years of CPU time! (550 MHz Xeons, Linux 2.12)
- Running times varied from 0.01 sec to 22 hours (CPLEX capped at 130000 nodes)

Gross Hardness (256 goods, 1000 bids)

- 1. Select algorithm
- 2. Select set of input distributions
- 3. Factor out known sources of hardness
- 4. Choose features
- 5. Generate instances
- 6. Compute running time, features
- 7. Learn a model of running time

Learning

- Classification: misleading error measure
- Statistical regression: learn a continuous function of features that predicts log of running time
- Supervised learning: data broken into 80% training set, 20% test set
- Started with simplest technique: linear regression
 - find a hyperplane that minimizes root mean squared error (RMSE) on training data
- Linear regression is useful:
 - as a (surprisingly good) baseline
 - yields a very interpretable model with understandable variables

LR: Error

Dataset	RMSE	MAE
1000 Bids, 256 Goods	0.581	0.436

September 12, 2004

Constraint Programming 2002, Cornell

LR: Subset Selection

24

LR: Cost of Omission (subset size 7)

September 12, 2004

Constraint Programming 2002, Cornell

Non-Linear Approaches

- Linear regression doesn't consider interactions between variables; likely to underfit data
- Consider 2nd degree polynomials
- Variables = pairwise products of original features
 - total of 325 variables
 - (cf. clauses/variables)
- More predictability, less interpretability

Quadratic vs Linear Regression

September 12, 2004

Constraint Programming 2002, Cornell

Quadratic vs Linear Regression

QR: RMSE vs. Subset Size

Cost of Omission (subset size 6)

September 12, 2004

Constraint Programming 2002, Cornell

What's Next?

Constructing algorithm portfolios

- combine several uncorrelated algorithms
- good initial results for WDP

Tuning distributions for hardness
 releasing new version of CATS

Summary

- Algorithms are predictable
 - Empirical hardness can be studied in a disciplined way
- Once again: Structure matters!
 - Uniform distributions aren't the best testbeds
 - Constraint graphs are very useful
 - Hypothesis: good heuristics make good features (e.g. LP)
- Our methodology is general and can be applied to other problems!